

DAVAO Region Online Business Seminar on Transportation Infrastructure and Energy

NE

Introduction of the Davao City Bypass Construction Project

Self-Introduction

Speaker : Wako NOTO (Date of Birth: 20th November 1968) Education : B.En., Civil Engineering, Faculty, Kansai University, Japan, 1991 Licentiate : Professional Engineer (Civil Engineering Tunnel)-Japan Specialty : Underground Space Development Specialist, Civil Engineer Employment record : 2013 to Date Nippon Civic Consulting Engineers Co., Ltd. 2009 to 2013 Nippon KOEI Co., Ltd 1991 to 2009 Nippon Civic Consulting Engineers Co., Ltd.

Project Involved in Philippines

Acting Project Manager: Detailed Design and Construction Supervision

Davao City Bypass Construction Project

Tunnel Planner: Preparatory Survey for Dalton Pass East Alternative Road Tunnel Adviser: Subic Freeport Expressway (SFEX) Capacity Expansion Project

PROJECT DESCRIPTION

Improvement of the transport logistics and mitigation of congestion in the Davao City urban center to contribute to the economic and social development of Mindanao. The bypass tunnel will have an important role to unite the east and west side communities, existing and under development, which are currently separated by a mountain.

PROJECT OBJECTIVE

- Hasten interregional transport of goods and services passing through Davao City;
- Reduce transport cost of products to customers;
- Mitigate congestion in the urban center of Davao City where average travel speed is less than 20 km/hr; as a result, the exhaust gas is also reduced.
- Provide a more reliable, more efficient and unimpeded flow of goods and services and support to the growing agro-industrial sector;
- Manage urbanization in Davao City and its periphery; and,
- Provide better access to/from major ports in the Davao Gulf including Sasa Port in Davao City and the Davao International Container Port in Panabo City.

BACKGROUND

- The Japan International Cooperation Agency (JICA) conducted Preparatory (Feasibility) Survey for Southern Mindanao Economic Corridor Improvement (Davao City Bypass Construction) Project in 2013 – 2015.
- The Project Implementing Agency is Department of Public Works and Highways (DPWH) and the Implementation Office is Road Management Cluster 1 (Bilateral) of Unified Project Management Office (RMC1-UPMO).
- Consulting Services

1) Detailed Design & Tender Assistance; Feb. 2017 – Dec. 2020

2) Capacity Development of DPWH Staff for Tunnel Operation and Maintenance and Tender Documents Preparation for Procurement of O&M Company of the Davao City Bypass Tunnel; will be started Nov. 2021

3) Construction Supervision; Package I-1 started 21st Dec. 2020

BUDGET OF PROJECT

• JICA STEP LOAN is applied for project implementation of Davao City Bypass Package I. GOP budget is applied for Package II.

Loan Agreement No. PH-P261, Aug. 2015; TWENTY THREE BILLION NINE HUNDRED SIX MILLION JPY (\23,906,000,000), 10,628 MILLION PHP

Loan Agreement No. PH-P273, Jun. 2020; THIRTY FOUR BILLION EIGHT HUNDRED THIRTY MILLION JPY (\34,830,000,000), 15,890 MILLION PHP

LOCATION MAP FOR OVERALL PROJECT

LOCATION MAP (Package I-1)

TOPOGRAPHICAL & FGEOLOGICAL CONDITIONS

The Project road is located at rolling to mountainous terrains except some limited flat sections. It passes under a hill of 210m height by a tunnel of 2,280m long.

Davao City Bypass Construction Project

TOTAL LENGTH – 45.2 km

Normal Section

PAVEMENT STRUCTURE

Tunnel Section

PAVEMENT STRUCTURE

ROADWAY CONSTRUCTION (4-LANE BYPASS)

Slope Compaction by Bulldozer (21 ton)

Slope Compaction by Hydraulic Excavator (Long-Arm)

P.15

BRIDGE CONSTRUCTION

Item	Bridge Name	AbutA Station	River Name	Span Arrangement	Bridge Length	Width	Horizontal Curve (m)	Skew Angles (degree)	Foundation Pie (%)	Bridge Type	Girder Type	Girder Depth	Free Board
1	Br.1L (S.Bound)	18+427.00	Matina River 1	7 (30+5@40+30)	260.00 m	8.84 m	linear	0	Bored Piles & Shinso*	PSCG	Type VI	1.829 m	19.006 m
2	Br. 1R (N.Bound)	18+427.00	(Do)	7 (30+6@40)	270.00 m	8.84 m	linear	0	Bored Piles & Shinso*	PSCG	Type VI	1.829 m	18.993 m
3	Br. 2L (S.Bound)	18+910.00	Matina River 2	2 (2@35)	70.00 m	8.84 m	linear - R=2116	0	Bored Piles	PSCG	Туре V	1.600 m	11.726 m
4	Br. 2R (S.Bound)	18+910.00	(Do)	2 (2@35)	70.00 m	8.84 m	R=3711	0	Bored Piles	PSCG	Туре V	1.600 m	11.724 m
5	Br. 3L (S.Bound)	22+025.00	Davao River	5 (5@40)	200.00 m	9.54 m	R=1200	0	Bored Piles	PSCG	Type VI	1.829 m	3.131 m
6	Br. 3R (N.Bound)	22+025.00	(Do)	5 (5@40)	200.00 m	9.54 m	R=1200	0	Bored Piles	PSCG	Type VI	1.829 m	3.131 m
	Total				870.00 m								

Note: * Shinso (Open Cason with steel plate liners)

Typical Section of PSCG

BRIDGE CONSTRUCTION

1). Matina River Bridge 1 (Bored Piles and Shinso Foundations)

ELEVATION

BRIDGE CONSTRUCTION

2) Matina River Bridge 2

3) Davao River Bridge

(1) Scope of Tunnel Works (L=2.3km x 2 number)

DPWH changed to construct two (2) main tunnels (1 for north and 1 for south bound traffic)

Image of Tunnel South Portal

(2) NATM (New Austrian Tunneling Method)

1st Shotcrete protection – applying a thin layer of shotcrete immediately after face advance, loosening and excessive Strengthened by Rock rock deformation be **Bolts** minimized. **Free Section Excavator** Strengthened by 2nd Support by steel ribs shotcrete

Geological	Support	Std Unit		R	ock Bolt				Shotcrete		Ste	el Supp	ort	Lining C	oncrete						
Class	Pattern 1)	Excavation	cavation Length Pitch (c.t.c) Installatio		Installation	Thick-	Layer	Application	Steel Mesh 2)	Upper	Lower	Pitch	Arch / Side	Invert 3)							
		Length		Periphery	Longitudinal	Area	ness				Half	Half	(c.tc)	Wall	(Bottom)						
		(m)	(m)	(m)	(m)		(cm)						(m)	(cm)	(c m)						
В	B-a	2.0	3.0	1.5	2.0	Upper 120°	5.0	1		-	-	-	-	30.0	0.0						
CI	Cl-a	1.5	3.0	1.5	1.5	Upper Half	10.0	1		-	-	-	-	30.0	(40)						
CII	CII-a	1.2	3.0	1.5	1.2	All-round	10.0	2	Upper/Side	-	-		-	30.0	(40)						
	Cll-b										H125		1.2								
DI	DI-a	1.0	3.0	1.2	1.0	All-round	15.0	2	All-round	Upper Half	H125	H125	1.0	30.0	45.0						
DI	DI-b	1.0	4.0	4.0		611	00.0	0	All and and	Line of Oisla	1460	1450		00.0	50.0						
Dil	DII-a	< 1.0	4.0	1.2	< 1.0	All-round	20.0	2	All-round	Upper/Side	H150	150	< 1.0	30.0	50.0						
Portal	Dill "o" will be u	< 1.0	4.0	1.Z	< 1.0	All-round	25.0	2	All-round	Oppenside	HZUU	200	< 1.0	30.0	50.0						
Notes. I).	a windeu ″h″willhou	sed for mud d		n principie.n	iuu sune, ciays a af which dafar	une, un, eu, motion is lora	^			Dava	o Rv	nace	Droi	ect							
2) Steel mesh is not required if Steel fiber mixed concrete (SEPC) is used for shotcrete																					
2). 3)	2). Signifies in () is used for mudistone, clay stone, tuff, etc. formulated in the tertiary period																				
4).	genee ()	Applicable	for Davad	City Bypas	s Tunnel)														
Source:	Road Tunne	el Technical S	Standards,	Japan Road	Association	G	eologi	cal Cl	ass and T	Type of Ro	ock										
		[Class			٦	Гуре о	f Roc	:k				Characteristics								
	Hard R	ock	В	Massiv	e rock, gra	anite, and	esite,	basa	lt, etc.			Ha	Hard								
			CI	Massiv	e to weath	ered rocl	k, Grai	nite, a	andesite,	basalt,		R	Relatively hard								
				conalo	merate. sa	andstone.	etc.					╇	- -								
	Cll* Tertiary clay stone and mudstone											Soft rock and stable									
		Soft	DI*	Tertiar	y clay ston	e and mu	udston	e wit	h gravel a	and sand	mix	R	elative	ly stable							
		Rock	DII*	Mixture	e of soil, gra	avel and	sand					Ur	Unstable								
			Note: *	Rock Typ	es for the D	avao Bypa	ass Tur	nnel e	xcavation												

(3) Standard Tunnel Structures and Support Patterns

(4) Ground Classification and Section Length of DCBCP Tunnel

Sout	hbound Tunnel		Northbound Tunnel								
Ground Classification	Length (m) Ratio (%)		Ground Classification	Length (m)	Ratio (%)						
DI	1,664	73.99	DI	1,644	73.39						
DI Large	96	4.27	DI Large	96	4.29						
DII	390	17.34	DII	430	19.20						
DII Large			DII Large								
DIII(Portal)	89	3.97	DIII(Portal)	60	2.69						
Portal work	10	0.43	Portal works	10	0.43						
Total	2,249	100.00	Total	2,240	100.00						

(6) Typical Geographic Layers at North Portal (Quarry at 2.3km from Tunnel)

(ctd.)

(7) Portal Work and Auxiliary Methods for Tunnel Portal Sections

(8) Standard Tunnel Sections

Class DI (21 Mpa)

Class DII (21 Mpa)

Note: S.L. (Spring Line)

(9) Tunnel Support Works (Class III: Portal Section)

TUNNEL O&M FACILITIES

(1) Component of Tunnel Facilities

Item	Description
Commu	nication System
101	Operation Control Center System
102	Network Communications
103	CCTV System
104	Safety System
105	Information System
106	Weigh-in-Motion System
107	Toll Collection System
Water S	upply System
108	Water Supply System
Ventilat	ion System
109	Ventilation System
Emerge	ncy Exits
110	Emergency Exit Facilities
Electric	al Facilities
111	Power Distribution System

TUNNEL O&M FACILITIES

(2) Tunnel Facility Layout at North Portal

TUNNEL CONSTRUCTION (EXCAVATION FROM BOTH PORTALS)

(1) Excavation From Both Portals to Complete within 37 Months

P.31

TUNNEL CONSTRUCTION (EXCAVATION FROM BOTH PORTALS)

(2) Typical Mountainous Tunnel Excavation Methods

(3) Tunnel Construction Special Equipments

Steel Rib (H-Beam)

Fixing Plat From

Slide Steel Form

P.33

RAP AND LAND ACQUISITION

(1) Affected Structures and Land

Description		20	17		20	018	;	201	9	20	20	2	021	1	20	22		20	23	2	202	.4
Package I-1 (4-Lane)																						
1.1 Detailed Engineering Design																						
1.2 Tender Assistance																						
1.3 RROW Acquisition and RAP Implementation																						
1.4 Construction (37 months)																						
1.5 Open to Public		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									*****		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
1.60 & MTunnel Facility																						
Package I-2, I-3 and Package II (4-Lane)																						
2.1 Detailed Engineering Design																						
2.1.1 Package I-1*							-															
2.1.2 Package I-2, I-3 & Package II																						
2.2 Tender Assistance	Pr	осе	ess	ing	of	Fina	inci	ng			ľ											
2.2.1 Package I-2, I-3 & Package II																						
2.3 RROW Acquisition and RAP Implementation																						
2.3.1 Package I-2, I-3 & Package II																						
2.4 Construction																						
2.4.1 Package I-2, I-3 & Package II (24 months)																						
2.5 Open to Public																						
2.5.1 Package I-2, I-3 & Package II																						

PERSPECTIVES

South Portal of Tunnel

DAGHANG SALAMAT!